49 lines
2.7 KiB
Haskell
49 lines
2.7 KiB
Haskell
module Part1 where
|
|
|
|
import Commons
|
|
import Data.Map (insert, foldr, (!), notMember)
|
|
|
|
|
|
applyModule :: Modules -> Int -> Int -> String -> Bool -> String -> (String, [String], Bool, Modules, Int, Int)
|
|
applyModule modules low high source p n
|
|
| notMember n modules = (n, [], True, modules, low, high)
|
|
| otherwise =
|
|
let m = modules ! n
|
|
in case m of
|
|
Broadcaster o -> (n, o, p, modules, if not p then low + length o else low,
|
|
if p then high + length o else high)
|
|
FlipFlop s o -> if not p then let newFF = FlipFlop {state = not s, outputs = o}
|
|
in (n, o, not s, insert n newFF modules,
|
|
if s then low + length o else low,
|
|
if not s then high + length o else high)
|
|
else (n, [], s, modules, low, high)
|
|
Conjonction i o -> let newC = Conjonction {inputs = insert source p i, outputs = o}
|
|
state = Data.Map.foldr (&&) True $ inputs newC
|
|
in if state then (n, o, False, insert n newC modules, low + length o, high)
|
|
else (n, o, True, insert n newC modules, low, high + length o)
|
|
|
|
applyModules :: Modules -> Int -> Int -> String -> Bool -> [String] -> ([(String, [String], Bool)], Modules, Int, Int)
|
|
applyModules modules low high _ _ [] = ([], modules, low, high)
|
|
applyModules modules low high source p (h: t) =
|
|
let (newS, outputs, newP, newModules, newLow, newHigh) = applyModule modules low high source p h
|
|
(result, newNewModules, newNewLow, newNewHigh) = applyModules newModules newLow newHigh source p t
|
|
in ((newS, outputs, newP): result, newNewModules, newNewLow, newNewHigh)
|
|
|
|
applySteps :: Modules -> Int -> Int -> [(String, [String], Bool)] -> (Modules, Int, Int)
|
|
applySteps modules low high [] = (modules, low, high)
|
|
applySteps modules low high ((source, names, pulse): t) =
|
|
let (result, newModules, newLow, newHigh) = applyModules modules low high source pulse names
|
|
in applySteps newModules newLow newHigh (t ++ result)
|
|
|
|
pressButton :: Modules -> (Modules, Int, Int)
|
|
pressButton modules = applySteps modules 1 0 [("button", ["broadcaster"], False)]
|
|
|
|
pressButtonNTimes' :: Modules -> Int -> Int -> Int -> Int -> (Int, Int)
|
|
pressButtonNTimes' modules low high i n
|
|
| i == n = (low, high)
|
|
| otherwise = let (newModules, newLow, newHigh) = pressButton modules
|
|
in pressButtonNTimes' newModules (low + newLow) (high + newHigh) (i + 1) n
|
|
|
|
pressButtonNTimes :: Modules -> Int -> (Int, Int)
|
|
pressButtonNTimes modules = pressButtonNTimes' modules 0 0 0
|